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Planck’s-constant dependence of the scaling of localization length in quantum dynamics

G. O. Morrow and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 25 November 1997!

We demonstrate numerically that the momentum-space localization length~or more precisely its inverse, the
momentum-space decay rate! for a quantum system experiencing nonlinear resonance exhibits scaling behavior
as Planck’s constant is varied. The behavior of the scaling multiplier appears to be a result of the different
levels of complexity accessible to systems with different\ values.@S1063-651X~98!00205-0#

PACS number~s!: 05.45.1b, 03.65.Ge, 32.80.Wr, 32.90.1a
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I. INTRODUCTION

The phase space of classical Hamiltonian systems
integrability is dominated by Kolmogorov-Arnold-Mose
~KAM ! tori and their broken remnants, cantori@1#. There is
now strong evidence that KAM tori and cantori can play
significant role in the quantum dynamics of these system
well @2–8#. In previous work@8#, we showed~for the quan-
tum driven rotor! that the rate of exponential decay of th
momentum-space probability exhibits scaling behavior, i
region dominated by self-similar higher-order resonanc
consistent with the predictions of a quantum renormalizat
map @1,8,9#. In the current paper we extend this result
studying the variation of the scaling properties of t
momentum-space decay rate with changing Planck’s c
stant.

II. DYNAMICAL MODEL

The classical version of the driven quantum system t
we considered in@8# is governed by a Hamiltonian

H85
J2

2I
1Ua cos~q2Vt!1Ub cos~3q2Vt!, ~1!

whereJ is the angular momentum of the rotor,I is the mo-
ment of inertia,Ua andUb are the amplitudes of the cosin
potential waves, andq is the angle of the rotor. We wil
rescale the angular momentum in units of Planck’s cons
\ so thatJ5\p. If we also rescale the time ast5 2It /\, the
amplitudes asUi5\2Vi /2I , the frequency asV5 \v/2I , and
the Hamiltonian asH85H (\2/2I ), we obtain

H5p21Va cos~q2vt !1Vb cos~3q2vt !. ~2!

The Schro¨dinger equation is then given by

i
]

]t
c~q,t !5F2

]2

]q2
1Va cos~q2vt !

1Vb cos~3q2vt !Gc~q,t !. ~3!

A strobe plot of the classical phase space forVb560, Va
5180, andv5240 is shown in Fig. 1. The pendulumlik
571063-651X/98/57~5!/5266~5!/$15.00
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primary resonances from the two cosine waves are obv
as are higher-order island chains.

It is useful to consider the projection of a resonance str
ture onto the momentum axis. For example, in Fig. 1
projection of the period-four resonance structure is the in
val p ' @55,66#. The projections of cantori and KAM tor
are typically intervals also. A crucial part of our argument
the observation@8# that the momentum-space decay rate
the time-averaged probability is essentially constant on e
resonance projection. Consider Fig. 2, which shows a lo
rithmic plot of a time-averaged momentum-space probabi
distribution. It is obtained in the following way. We start th
system in an eigenstate of the angular momentum at the
ter of the primary three-island resonance. We integrate
Schrodinger equation for a long time~many periodsT
5 2p/v). The probability amplitude spreads and settles in
a long-time distribution. We then take a time average of t
distribution to remove spurious fluctuations.

The dashed lines in Fig. 2 indicate the boundaries of
momentum projection of the period-four resonance structu
Between the linep555 and the one atp566, ln P(p) is a
linear function ofp. The wave function’s decay remains e

FIG. 1. Strobe plot of the classical phase space. The param
values areVa5180,Vb560, andv5120.
5266 © 1998 The American Physical Society
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57 5267PLANCK’S-CONSTANT DEPENDENCE OF THE SCALING . . .
sentially exponential to the right of the period-four regio
but with different decay rate. Within the period-four proje
tion, the probability behaves asP(p);e2l(p2p0), wherep0
is the left end of the projection of the classical period-fo
structure.

As discussed at great length in@8#, if we vary the param-
etersVa or Vb for a particular value of frequencyv, we can
compute the variation of the momentum-space decay ral
as a function of these parameters. For a particular se
parameter values (Va ,Vb) we compute the time-average
momentum-space probability. We isolate a particular reg
of momentum space defined as the momentum projectio
the classical phase-space structure associated with a pa
lar torus. We then compute the least-squares fit to ln@P(p)# in
that region. The slope of the linear fit gives the momentu
space decay ratel.

III. RENORMALIZATION MAP

The renormalization map for this quantum model is t
basis upon which we measure scaling in this quantum
tem. It has been discussed in several previous refere
@1,8,9#, so we will only summarize key results here. T
renormalization map generates sequences of pairs of hig
order resonances on ever smaller scales in the Hilbert sp
The map acts on dimensionless quantitiesX
5 (2m/v)A2Va and Y5 (2m/v)A2Vb and n, wheren is
the relative wave number of a pair of neighboring resonan
@in Eq. ~3! n53/1]. Notice thatX andY do not depend on\
sincev}\21 andVi}\22. The form of the map is

n i 115n i 11~n i !, Xi 115Xi 11~Xi ,Yi ,n i !,

Yi 115Yi 11~Xi ,Yi ,n i !, ~4!

wheren i 11, Xi 11, andYI 11 are nonlinear functions ofn i ,
Xi , andYi .

In the classical system, the most robust KAM tori are t
noble tori. The sequence of resonances that approxim
these tori are the slowest to overlap as we go to sma
scales in phase space. A similar phenomenon happens i
quantum system. The quantum nonlinear resonances as
ated with the noble sequences of relative wave numbers
the slowest to overlap and share probability, as we go

FIG. 2. Part of the stable manifold of the golden mean tor
The manifold is computed by direct iteration of the renormalizat
map.
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small scales in the Hilbert space. In@8# we found that the
most robust sequence of resonances in the period-four
jection (55,p,66 in the classical plot of Fig. 1!, where
those whose relative wave numbers approach the go
mean (A511)/2.

If we restrict consideration to the golden mean torus,
renormalization is particularly simple. In this case, we c
paint a fairly complete picture of the behavior of this tor
solely from the renormaliztion. The renormalization map h
three fixed points@8#. The fixed points at infinity and zero
are attracting and the domains of attraction are separate
a codimension-1 surface, called the stable manifold, wh
passes through the third fixed point. The third fixed point h
two stable eigenvectors and one unstable eigenvector an
stable manifold is tangential to the plane spanned by the
stable eigenvectors. The stable manifold can be compute
direct iteration of the renormalization map. Figure 3 sho
part of the stable manifold~computed numerically! for the
most robust sequence of resonance pairs, namely, those
proximating the golden mean torus. All the resonances in
sequences associated with these limiting relative wave n
bers fall between the period-four and period-three re
nances.

If the renormalization map acts on a functionQ(Z) of
parameterZ5(X,Y), then the functionQ(Z) is said to scale
under the renormalization ifT+Q(Z)[Q(TZ)5xQ(Z),
whereT is the renormalization transformation andx is a real
constant that only depends on the functionQ. In the case of
such an observable, it can be shown@8# that Q(Z)}uZ
2Z* u ln x/ln d, whered is the unstable eigenvalue of the reno
malization map anduZ2Z* u is the distance in paramete
space of the pointZ from the stable manifold, measure
along the unstable direction. This equation provides par
the underpinning of our numerical signature of scaling in
quantum model.

For a particular value of the driving frequencyv, we fix
Va at Va

0 and then computel for several values ofVb . We
then construct a plot of ln(l) versus ln(uVb2V* u), whereV*
is the intersection of the vertical lineVa5Va

0 with the stable
manifold of the golden mean torus. Figure 4 shows one s
plot for the casev51600. The error bars are derived fro
the least-squares fit to the momentum-space probability.
line shown is the least-squares fit to these points. The fun

. FIG. 3. Logarithmic plot of the time-averaged momentum-spa
probability distribution for the parametersVa5160, Vb535, and
v5120. The dotted lines delimit the projection of the classic
period-four resonance.
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5268 57G. O. MORROW AND L. E. REICHL
mentally important result is that there exists a scaling re
tion for this quantity. That is, the fact that the plot of ln(l)
versus ln(uVb2V* u) forms a straight line shows that there
a scale invariance present in this system.

From the slope of the curve in Fig. 4, we can determ
the scaling parameterx, given our knowledge of the unstab
eigenvalued from the renormalization map. For the golde
mean unstable manifoldd51.618. This appears to be th
dominant unstable manifold in the region. The slope is
proximately 0.86. Since the slope is equal to lnx/ln d, we
find for the scaling parameterx'0.6560.02.

IV. VARIATION OF THE SCALING MULTIPLIER
WITH \

The preceding section displays the scaling relation
fixed v51600 ~and therefore for a fixed\), but variable
amplitudesVa andVb . In this section we wish to look at th
effect of changing\. We consider a point (X0 ,Y0) near the
golden mean stable manifold, in the renormalization spa
We then vary\ by varying bothv and Va , Vb so that
(X0 ,Y0) remains fixed. We also scale the momentum byv

so p̃5p/v. ~The momentum scaling serves to map cor
sponding phase-space structures to a single momentum v
for all the different\ values.! The values ofv we considered
form the sequence

v5100,120,200,400,800,1600. ~5!

In Fig. 5 we show our results for the slope of the scali
relation curve versus\. Because we have scaled\ out of our
equations of motion, the value ofv fixes\, up to an overall
normalization~recall thatv}\21). To plot the slope versus
\ relation we have simply taken\5v21. The slope of the
scaling relation appears to decrease and may be approa
a limiting value as\ becomes very small~the classical resul
in Sec. V gives a limiting value!.

The range of our calculation is naturally limited by tw
factors. First, it is difficult to obtain reliable results for ve
large \ ~i.e., very quantum systems! because the time
averaged momentum-space probability in these cases is

FIG. 4. Plot of the scaling relation for the momentum-spa
decay rate in the period-four projection. The parameters arv
51600, Va554 496, andVb58000, 8200, 8500, 9000, 9500
10 200, 10 500, and 10 700. The golden mean torus’s critical va
along the lineVa554 496 isV* 57986. The error bars are derive
from the least-squares fit to the momentum-space probability.
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oscillatory on the scale on which we wish to approximate
as linear. Second, on the side of small\, the numerical simu-
lations become more and more expensive in computer
sources, as we must include a greater and greater numb
basis states to model the system. Our data represent a
promise between these two factors.

V. SCALING IN THE CLASSICAL MODEL

Although our numerical simulations of the quantum sy
tem are limited in their approach to the semiclassical lim
~because of computer resources, see the discussion ab!,
we can perform the analysis on the fully classical syst
rather cheaply. In order to compute a quantity similar to
quantum momentum-space probability for the classi
model, we begin with an ensemble that is similar to the i
tial quantum state. The initial quantum state was a mom
tum eigenstateum&. The position representation of such
state isc(x,0)5^xum&5eimx/A2p, so the initial probability
is uniform in the position direction. We begin our classic
simulation with an ensemble localized in momentum a
uniform in position.

We propagate the ensemble forward by a large numbe
field periods~in our case 600 field periods! and then we plot
the points in the ensemble att5600T. This plot is shown in
Fig. 6. Next we divide the momentum axis into bins a
count the number of trajectories that lie in each bin. A lo
arithimic plot of bin counts is shown in Fig. 7~a!. We can
carry out the same scaling analysis on the classical dat
we did on the quantum data. We simply create a picture
Fig. 7~a! for several different nonlinearity parameters, fin

e

e

FIG. 5. Slopes of the scaling relation curves plotted versus
logarithm of Planck’s constant. Each slope is derived from a le
squares fit to the scaling relation.

FIG. 6. Progress of an initially localized classical ensemble a
600 field periods. The parameters arev5100, Va5210, andVb

531. There are 105 points in the ensemble.
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57 5269PLANCK’S-CONSTANT DEPENDENCE OF THE SCALING . . .
the slopes in the relevant region, and plot the logarithm
the slopes versus the logarithm ofuVb2V* u. The scaling
data are shown in Fig. 8. The data give a value for the s
ing multiplier of

xclassical50.5960.2. ~6!

We believe this gives a left-hand limit for the data presen
in Fig. 5. It appears that the quantum data tend toward
classical value as\ is decreased.

VI. ANALYSIS

In classical systems, the important quantity for describ
transport of phase space trajectories through regions d
nated by cantori is the ‘‘cantorus flux,’’ which is the rate
transport of trajectories across the broken remnants o
KAM barrier. The cantorus flux scales under the classi

FIG. 7. Logarithmic plot of the~a! classical and~b! quantum
probabilities. The parameters arev5100, Va5210, andVb531.
There are 105 points in the classical ensemble. The quantum m
mentum axis is scaled by 10 because thev value was 1000 for tha
plot.

FIG. 8. Plot of the scaling relation for the classical system. T
parameters arev5100, Va5210, andVb531, 33, 35, 38, 43, and
52. The critical value forVb is V* 527.67.
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renormalization map @4,10,11#. Numerical experiments
@3,12,13# suggest that the quantum system corresponding
a classically chaotic Hamiltonian system ‘‘feels’’ the unde
lying classical structure. In particular, the presence of KA
tori and certain cantori in the classical phase space signa
exponential decay in the quantum momentum-space p
ability in the momentum region occupied by the classi
structures.

The quantum system does not appear to be affected
structures in the underlying classical phase space that
smaller than\. A classical trajectory is allowed to interac
with structures of any spatial scale in the phase space, b
quantum ‘‘trajectory’’ ~wave packet! is limited and only re-
sponds to phase-space structures on the order of or la
than\ in area. We have noted a similar behavior@8# in the
Floquet eigenstates of the two resonance system. The
quet eigenstates correspond to classical phase-space
tures~in, for example, the Husimi representation!. However,
there are no Floquet eigenstates associated with phase-s
structures whose area is smaller than roughly\.

Meiss and Ott@13# used this notion of ‘‘accessible’
phase-space scales to obtain a scaling relation for
quantum-classical crossover time for a system at its crit
nonlinearity parameter. Lai, Ott, and Grebogi@14# extended
the result to noncritical parameter values. Note that in b
cases, the authors derive a scaling relation, but do not de
values for the scaling parameters.

VII. SCALING MULTIPLIER’S DEPENDENCE ON \

We now discuss how the idea of accessible phase-sp
scales affects the renormalization. We begin with some
sults from the purely classical renormalization that conc
the behavior of cantorus flux. As was mentioned above,
cantorus flux scales under the classical renormaliza
@10,11#. The idea is that there is a simple relation betwe
the flux through successive resonance chains in the sequ
of rational approximates to a particular~near-critical! torus.
If we label the rational approximate chain with an indexi
~where i . j implies that the resonance chaini has higher
period than chainj , smaller phase-space area per resona
island than chainj , and closer proximity to the torus tha
does chainj ) and if we denote the flux through the ration
approximate chaini by Wi , then it has been shown@10# that

Wi.Wj⇔ i , j . ~7!

Starting from the scaling relation for flux, it can be show
@10,11# that the difference in flux as the nonlinearity param
eter is increased away from its critical value is proportion
to the flux itself:

Wi~DK !2Wi„~DK !/d…5Wi~DK !S 12
1

ab D . ~8!

~Here the nonlinearity parameter is represented byK, DK
5K2K* , and a, b, and d are positive classical scalin
parameters.! We conclude that in the classical system, t
change in flux under a given change in nonlinearity para
eter is greater for the lower-order resonance chains~i.e.,
those labeled by a smaller value ofi ).
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5270 57G. O. MORROW AND L. E. REICHL
We now make the connection to the quantum system.
use Planck’s constant as a yardstick to decide which clas
phase-space structures are important in a given quantum
tem. We note the conjecture of Mackay, Meiss, and Perc
@4# that there is a direct connection between the class
cantorus flux and the quantum momentum-space probab
decay rate.

Consider quantum systems with two different values
Planck’s constant\ i and \ j and let us suppose that\ i
.\ j . Then thej system will interact with higher-order reso
nances than will thei system. From the discussion above, w
then expect that for a given change in nonlinearity para
eter, there will be a greater change in flux for thei system
than for thej system. Therefore, we expect a greater cha
in the decay rate for thei system than for thej system.
Given the definition of the scaling multiplierx,

T+Q~Z!5xQ~Z!, ~9!

and recalling that the quantum renormalization map’s eff
upon nonlinearity parameterZ5(X,Y) is independent of
Planck’s constant, we conclude thatx i.x j .

Let us follow this line of reasoning toward the\→0
limit. As \ gets smaller and smaller, the quantum syst
‘‘sees’’ smaller and smaller scales in the phase space. S
the classical system already sees all scales, we conclude
xclassical is a lower bound on the quantum values.

Figure 5 shows the slope of thel versusuX2X* u curve
plotted versus the logarithm of\. ~Note that slope is equal to
ln x/ln d, whered is the unstable eigenvalue of the renorm
si-

.
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ization.! Figure 5 shows that the slope indeed decreases
decreasing\. Noting the value of the slope of the corre
sponding classical curve is'21.1, we see that it is plausibl
that the quantum slope smoothly approaches the clas
value.

VIII. CONCLUSION

We have shown numerical evidence that the extent of
localization in momentum space~or, equivalently, the
momentum-space decay rate! of a driven, continuous-time
quantum Hamiltonian system exhibits a scaling behavior
particular, the momentum-space decay rate approxima
satisfies a relation of the forml}uz2zcu ln x/ln d. This behav-
ior is consistent with that of a ‘‘scaling function,’’ i.e.,
physical function that is homogeneous under the renorm
ization transformation. Further, we show that the scal
multiplier x decreases with decreasing\. We explain this
fact using arguments based on the course-grained p
space previously employed to derive scaling relations for
quantum-classical crossover time.
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