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Planck’s-constant dependence of the scaling of localization length in quantum dynamics
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We demonstrate numerically that the momentum-space localization léagtiore precisely its inverse, the
momentum-space decay rafer a quantum system experiencing nonlinear resonance exhibits scaling behavior
as Planck’s constant is varied. The behavior of the scaling multiplier appears to be a result of the different
levels of complexity accessible to systems with differentalues.[S1063-651X98)00205-0

PACS numbd(s): 05.45+b, 03.65.Ge, 32.80.Wr, 32.90a

[. INTRODUCTION primary resonances from the two cosine waves are obvious
as are higher-order island chains.

The phase space of classical Hamiltonian systems near It is useful to consider the projection of a resonance struc-
integrability is dominated by Kolmogorov-Arnold-Moser ture onto the momentum axis. For example, in Fig. 1 the
(KAM) tori and their broken remnants, cantpti. There is  projection of the period-four resonance structure is the inter-
now strong evidence that KAM tori and cantori can play aval p =~ [55,66]. The projections of cantori and KAM tori
significant role in the quantum dynamics of these systems aare typically intervals also. A crucial part of our argument is
well [2—8]. In previous work 8], we showedfor the quan- the observatiof8] that the momentum-space decay rate of
tum driven rotoy that the rate of exponential decay of the the time-averaged probability is essentially constant on each
momentum-space probability exhibits scaling behavior, in aesonance projection. Consider Fig. 2, which shows a loga-
region dominated by self-similar higher-order resonancesithmic plot of a time-averaged momentum-space probability
consistent with the predictions of a quantum renormalizatiordistribution. It is obtained in the following way. We start the
map [1,8,9. In the current paper we extend this result by system in an eigenstate of the angular momentum at the cen-
studying the variation of the scaling properties of theter of the primary three-island resonance. We integrate the
momentum-space decay rate with changing Planck’s conSchrodinger equation for a long timémany periodsT
stant. = 27/ w). The probability amplitude spreads and settles into

a long-time distribution. We then take a time average of this
Il. DYNAMICAL MODEL distribution to remove spurious fluctuations.
The dashed lines in Fig. 2 indicate the boundaries of the

The classical version of the driven quantum system thainomentum projection of the period-four resonance structure.
we considered if8] is governed by a Hamiltonian Between the lingg=55 and the one g1=66, In P(p) is a

12 linear function ofp. The wave function’s decay remains es-

H’:§+Ua COE{q_QT)+Ub COE(3Q—Q7'), (l)

whereJ is the angular momentum of the rotdrjs the mo-

ment of inertia,u, andU are the amplitudes of the cosine
potential waves, andj is the angle of the rotor. We will 120
rescale the angular momentum in units of Planck’s constant

f so thatdJ=#Ap. If we also rescale the time as= 2It/#4, the
amplitudes as);=%2V,/2l, the frequency aQ = #w/2l, and

the Hamiltonian as1’=H (%#2/21), we obtain

H=p2+V, cogq— wt)+V, cog3q— wt). 2) P

The Schrdinger equation is then given by

4 NG
|E¢(q,t)— —aTq2+Va1 cogq— wt) 20
+Vy cos{3q—wt)]¢(q,t). 3
A strobe plot of the classical phase space Y= 60, V, FIG. 1. Strobe plot of the classical phase space. The parameter

=180, andw=240 is shown in Fig. 1. The pendulumlike values arev,=180,V,=60, andw=120.
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FIG. 2. Part of the stable manifold of the golden mean torus. FIG. 3. Logarithmic plot of the time-averaged momentum-space

The manifold is computed by direct iteration of the renormalizationProbability distribution for the parametet$,=160, V,=35, and
map. w=120. The dotted lines delimit the projection of the classical

period-four resonance.
sentially exponential to the right of the period-four region,
but with different decay rate. Within the period-four projec-
tion, the probability behaves @&(p)~e *P~Po wherep,

small scales in the Hilbert space. [8] we found that the
most robust sequence of resonances in the period-four pro-
is the left end of the projection of the classical period-fourl€Ction (55<p<66 in the classical plot of Fig.)1 where
structure. those whose relative wave numbers approach the golden
As discussed at great length[ig], if we vary the param- Mean 5+ 1)12. _ _
etersV, or V,, for a particular value of frequenay, we can If we restrict consideration to the golden_mean torus, the
compute the variation of the momentum-space decayNate renormallgatlon is partlcglarly simple. In thl_s case, we can
as a function of these parameters. For a particular set dint a fairly complete picture of the behavior of this torus
parameter values\,,V,) we compute the time-averaged solely from the renormaliztion. The renormalization map has
momentum-space probability. We isolate a particular regioriree fixed pointg8]. The fixed points at infinity and zero
of momentum space defined as the momentum projection '€ aftracting and the domains of attraction are s_eparateql by
the classical phase-space structure associated with a particy-codimension-1 surface, called the stable manifold, which
lar torus. We then compute the least-squares fit[B(i)] in passes throggh the third fixed point. The th|(d fixed point has
that region. The slope of the linear fit gives the momentumWo stable eigenvectors and one unstable eigenvector and the
space decéy rate stable manifold is tangential to the plane spanned by the two
' stable eigenvectors. The stable manifold can be computed by
direct iteration of the renormalization map. Figure 3 shows
part of the stable manifoldcomputed numericallyfor the

The renormalization map for this quantum model is theMOSt robust sequence of resonance pairs, namely, those ap-
basis upon which we measure scaling in this quantum sygaroximating the golden mean torus. All the resonances in the
tem. It has been discussed in several previous referencé§duences associated with these limiting relative wave num-
[1,8,9, so we will only summarize key results here. The bers fall between the period-four and period-three reso-
renormalization map generates sequences of pairs of highdpances. o _
order resonances on ever smaller scales in the Hilbert space. If the renormalization map acts on a functi@(Z) of
The map acts on dimensionless quantiteX ParameteZ=(X,Y), then the functiorQ(Z) is said to scale
= (2mlw)y2V, and Y= (2m/w)+2V, and v, where v is under t_he renormahzgﬂon |ﬂ'oQ(Z)EQ_(TZ)=XQ(Z),
the relative wave number of a pair of neighboring resonance¥hereT is the renormalization transformation agds a real
[in Eq. (3) v=23/1]. Notice thatX andY do not depend o# constant that only depends on the funct@nin the case of

IIl. RENORMALIZATION MAP

sincewx# 1 andV,=4 2. The form of the map is such an observable, it can be shog8i that Q(Z)x|Z
—Z*|"¥n3 wheres is the unstable eigenvalue of the renor-
vier=vie(v),  Xiz1=Xi1(X, Y, v), malization map andZ—2Z*| is the distance in parameter
space of the poinZ from the stable manifold, measured
Yii1=Yi (XY, v, (4)  along the unstable direction. This equation provides part of
the underpinning of our numerical signature of scaling in the
wherev;, 4, Xi.1, andY,,; are nonlinear functions of;,  dquantum model.
X;, andY;. For a particular value of the driving frequenay we fix

In the classical system, the most robust KAM tori are theV, at V3 and then computa for several values o¥,,. We
noble tori. The sequence of resonances that approximatien construct a plot of In} versus InfV,—V*|), whereV*
these tori are the slowest to overlap as we go to smalleis the intersection of the vertical liné,= V2 with the stable
scales in phase space. A similar phenomenon happens in theanifold of the golden mean torus. Figure 4 shows one such
quantum system. The quantum nonlinear resonances assoplet for the casas=1600. The error bars are derived from
ated with the noble sequences of relative wave numbers atée least-squares fit to the momentum-space probability. The
the slowest to overlap and share probability, as we go tdine shown is the least-squares fit to these points. The funda-



5268 G. O. MORROW AND L. E. REICHL 57

-2.8 -0.2 3
-3 \\‘\ ~03 .
-3 - -0.4
{ & _0.5
= -3.4 & .
T = —0.6
- 3.6 -0.7 *
-3.8 -0.8 .
-4 09 [s
-7 -6.5 -6 -5.5 -5
68 7 72 74 76 18 8§ 82 In (h)
' . .
]Jl(Vb- v ) FIG. 5. Slopes of the scaling relation curves plotted versus the

logarithm of Planck’s constant. Each slope is derived from a least-
FIG. 4. Plot of the scaling relation for the momentum-spaceSquares fit to the scaling relation.
decay rate in the period-four projection. The parameters «are
=1600, V,=54 496, andV,=8000, 8200, 8500, 9000, 9500, oscillatory on the scale on which we wish to approximate it
10 200, 10 500, and 10 700. The golden mean torus’s critical valu@s linear. Second, on the side of snalthe numerical simu-
along the lineV,=54 496 isV* =7986. The error bars are derived lations become more and more expensive in computer re-
from the least-squares fit to the momentum-space probability.  sources, as we must include a greater and greater number of
basis states to model the system. Our data represent a com-
mentally important result is that there exists a scaling relapromise between these two factors.
tion for this quantity. That is, the fact that the plot of j(
versus In[V,—V*|) forms a straight line shows that there is
a scale invariance present in this system.

From the slope of the curve in Fig. 4, we can determine  Although our numerical simulations of the quantum sys-
the scaling parameter, given our knowledge of the unstable tem are limited in their approach to the semiclassical limit
eigenvalues from the renormalization map. For the golden (hecause of computer resources, see the discussion)above
mean unstable manifold=1.618. This appears to be the we can perform the analysis on the fully classical system
dominant unstable manifold in the region. The slope is aprather cheaply. In order to compute a quantity similar to the
proximately 0.86. Since the slope is equal toylm 6, we  quantum momentum-space probability for the classical

V. SCALING IN THE CLASSICAL MODEL

find for the scaling parametgr~0.65+0.02. model, we begin with an ensemble that is similar to the ini-
tial quantum state. The initial quantum state was a momen-
IV. VARIATION OF THE SCALING MULTIPLIER tum eigenstatgm). The position representation of such a
WITH 4 state isy(x,0)=(x|m)=e™/ /2, so the initial probability

i i i i ) is uniform in the position direction. We begin our classical
The preceding section displays the scaling relation forgjm jation with an ensemble localized in momentum and
fixed w=1600 (and therefore for a fixed), but variable uniform in position.

amplitudesv, andvb. In this ;ection we wish to look at the We propagate the ensemble forward by a large number of
effect of changingi. We consider a pointXo,Yo) near the  fie|d periods(in our case 600 field periogiand then we plot
golden mean stable manifold, in the renormalization spacgpe points in the ensemble & 600T. This plot is shown in

We then vary# by varying bothw and V,, Vy, so that  Fig 6. Next we divide the momentum axis into bins and
(Xo,Yo) remains fixed. We also scale the momentumaby  count the number of trajectories that lie in each bin. A log-
so p=p/w. (The momentum scaling serves to map corre-arithimic plot of bin counts is shown in Fig.(@. We can
sponding phase-space structures to a single momentum valgarry out the same scaling analysis on the classical data as
for all the different? values) The values ofv we considered we did on the quantum data. We simply create a picture like
form the sequence Fig. 7(a) for several different nonlinearity parameters, find

»=100,120,200,400,800,1600. (5

35

In Fig. 5 we show our results for the slope of the scaling

relation curve versus. Because we have scalédut of our

equations of motion, the value af fixes#, up to an overall P

normalization(recall thatw>#~1). To plot the slope versus

# relation we have simply takel= 1. The slope of the

scaling relation appears to decrease and may be approaching

a limiting value ash becomes very smafthe classical result 20

in Sec. V gives a limiting value 0
The range of our calculation is naturally limited by two 4

factors. First, it is difficult to obtain reliable results for very  FIG. 6. Progress of an initially localized classical ensemble after

large # (i.e., very quantum systemsbecause the time- 600 field periods. The parameters ase= 100, V,=210, andV,,

averaged momentum-space probability in these cases is very31. There are T0points in the ensemble.
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-2 renormalization map[4,10,11. Numerical experiments
T (@) [3,12,13 suggest that the quantum system corresponding to
a classically chaotic Hamiltonian system “feels” the under-
lying classical structure. In particular, the presence of KAM
tori and certain cantori in the classical phase space signals an
exponential decay in the quantum momentum-space prob-
ability in the momentum region occupied by the classical
-8 classical %N structures.
Z A The quantum system does not appear to be affected by
35 50 structures in the underlying classical phase space that are
-3 w“”“""“”““‘w\ (b) smaller than’. A classical trajectory is allowed to interact
with structures of any spatial scale in the phase space, but a
guantum “trajectory” (wave packetis limited and only re-
sponds to phase-space structures on the order of or larger
than# in area. We have noted a similar beha\ig} in the
Floquet eigenstates of the two resonance system. The Flo-
] » \ quet eigenstates correspond to classical phase-space struc-
quantum N, tures(in, for example, the Husimi representatiorlowever,
l 350 500 there are no Floquet eigenstates associated with phase-space
momentum structures whose area is smaller than roughly
Meiss and Ott[13] used this notion of “accessible”
phase-space scales to obtain a scaling relation for the
_quantum-classical crossover time for a system at its critical
nonlinearity parameter. Lai, Ott, and Greb¢g#] extended
the result to noncritical parameter values. Note that in both
cases, the authors derive a scaling relation, but do not derive
the slopes in the relevant region, and plot the logarithm of/alues for the scaling parameters.
the slopes versus the logarithm pf,—V*|. The scaling
data are shown in Fig. 8. The data give a value for the scal- v/||. SCALING MULTIPLIER'S DEPENDENCE ON #
ing multiplier of

In ( probability )

FIG. 7. Logarithmic plot of thga) classical andb) quantum
probabilities. The parameters ase=100, V,=210, andV,=31.
There are 19 points in the classical ensemble. The quantum mo
mentum axis is scaled by 10 because ¢healue was 1000 for that
plot.

We now discuss how the idea of accessible phase-space

Xclassica= 0.59+0.2. (6) scales affects the renormalization. We begin with some re-
sults from the purely classical renormalization that concern

We believe this gives a left-hand limit for the data presentedhe pehavior of cantorus flux. As was mentioned above, the
in Fig. 5. It appears that the quantum data tend toward thigantorus flux scales under the classical renormalization

classical value a8 is decreased. [10,11). The idea is that there is a simple relation between
the flux through successive resonance chains in the sequence
VI. ANALYSIS of rational approximates to a particularear-critical torus.

In classical svst the i ant ity for d ibi If we label the rational approximate chain with an index
h classical systems, the important quantity for describin wherei>j implies that the resonance chairhas higher

transport of phase space trajectories through regions domj-_ . -
= - eriod than chairj, smaller phase-space area per resonance
nated by cantori is the “cantorus flux,” which is the rate of r] P P P

transport of trajectories across the broken remnants of island than chairj, and closer proximity to the torus than

. .__does chainj) and if we denote the flux through the rational
KAM barrier. The cantorus flux scales under the ClaSSICaEpprOXimate chaiit by W;, then it has been show0] that

0 Wi Wi <. 7)
0.5 ™4
I Starting from the scaling relation for flux, it can be shown
-1 \1\ [10,17] that the difference in flux as the nonlinearity param-

= eter is increased away from its critical value is proportional
g -1.5 i .
= to the flux itself:

.. 1
-25 \L Wi(AK)—Wi((AK)/(S):Wi(AK)(1—@). (8)
1.5 2 2.5 3 S _
* (Here the nonlinearity parameter is representedkhyA K
hl(\’i)'v ) =K—-K*, and a, B8, and § are positive classical scaling

parameter$.We conclude that in the classical system, the
FIG. 8. Plot of the scaling relation for the classical system. Thechange in flux under a given change in nonllnearlty-param-
parameters are= 100, V,=210, andV, =31, 33, 35, 38,43, and eter is greater for the lower-order resonance chdires,
52. The critical value fol, is V* =27.67. those labeled by a smaller value igf
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We now make the connection to the quantum system. Weation) Figure 5 shows that the slope indeed decreases with
use Planck’s constant as a yardstick to decide which classicdecreasing:. Noting the value of the slope of the corre-
phase-space structures are important in a given guantum sysponding classical curve i€ — 1.1, we see that it is plausible
tem. We note the conjecture of Mackay, Meiss, and Percivathat the quantum slope smoothly approaches the classical
[4] that there is a direct connection between the classicalalue.
cantorus flux and the quantum momentum-space probability
decay rate.

Consider quantum systems with two different values of Viil. CONCLUSION
Planck’s constanti; and #; and let us suppose tha; We have shown numerical evidence that the extent of the
>fj. Then the; system will interact W|th_ hlghe_r-order réso- |ocalization in momentum spacéor, equivalently, the
nances than will thé system. From the discussion above, Wemomentum-space decay ratef a driven, continuous-time
then expect that for a given change in nonlinearity paramgyyantum Hamiltonian system exhibits a scaling behavior. In

eter, there will be a greater change in flux for ihsystem  particular, the momentum-space decay rate approximately
than for thej system. Therefore, we expect a greater changgatisfies a relation of the forme|z— z¢|" ¥ %, This behav-

in the decay rate for thé system than for thg system. o1 is consistent with that of a “scaling function,” i.e., a
Given the definition of the scaling multipliey, physical function that is homogeneous under the renormal-
. _ ization transformation. Further, we show that the scaling
TQ(2)=xQ(2), ©) multiplier y decreases with decreasirig We explain this
and recalling that the quantum renormalization map’s effecfaCt using arguments based on the course-grained phase
upon nonlinearity parameteZ=(X,Y) is independent of SPace previously employed to derive scaling relations for the
Planck’s constant, we conclude that> x; - quantum-classical crossover time.
Let us follow this line of reasoning toward the—0
limit. As # gets smaller and smaller, the quantum system
“sees” smaller and smaller scales in the phase space. Since
the classical system already sees all scales, we conclude that The authors wish to thank the Robert A. Welch Founda-
Xclassical 1S @ lower bound on the quantum values. tion, Grant No. F-1051, for support of this work. We also
Figure 5 shows the slope of theversus|X—X*| curve  wish to thank the University of Texas System Center for
plotted versus the logarithm @f. (Note that slope is equal to High Performance Computing and NERSC for the use of
In x/In 8, where$ is the unstable eigenvalue of the renormal-their computation facilities.
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